Motor imagery after subcortical stroke: a functional magnetic resonance imaging study.
نویسندگان
چکیده
BACKGROUND AND PURPOSE In recovered subcortical stroke, the pattern of motor network activation during motor execution can appear normal or not, depending on the task. Whether this applies to other aspects of motor function is unknown. We used functional MRI to assess motor imagery (MI), a promising new approach to improve motor function after stroke, and contrasted it to motor execution. METHODS Twenty well-recovered patients with hemiparetic subcortical stroke (14 males; mean age, 66.5 years) and 17 aged-matched control subjects were studied. Extensive behavioral screening excluded 8 patients and 4 control subjects due to impaired MI abilities. Subjects performed MI and motor execution of a paced finger-thumb opposition sequence using a functional MRI paradigm that monitored compliance. Activation within the primary motor cortex (BA4a and 4p), dorsal premotor, and supplementary motor areas was examined. RESULTS The pattern of activation during affected-hand motor execution was not different from control subjects. Affected-hand MI activation was also largely similar to control subjects, including involvement of BA4, but with important differences: (1) unlike control subjects and the nonaffected hand, activation in BA4a and dorsal premotor was not lower during MI as compared with motor execution; (2) the hemispheric balance of BA4p activation was significantly less lateralized than control subjects; and (3) ipsilesional BA4p activation positively correlated with motor performance. CONCLUSIONS In well-recovered subcortical stroke, the motor system, including ipsilesional BA4, is activated during MI despite the lesion. It, however, remains disorganized in proportion to residual motor impairment. Thus, components of movement upstream from execution appear differentially affected after stroke and could be targeted by rehabilitation in more severely affected patients.
منابع مشابه
Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملCortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.
OBJECTIVE This study aimed at identifying the impact of subcortical stroke on the interaction of cortical motor areas within and across hemispheres during the generation of voluntary hand movements. METHODS Twelve subacute stroke patients with a subcortical ischemic lesion and 12 age-matched control subjects were scanned using 3-Tesla functional magnetic resonance imaging. Subjects performed ...
متن کاملEnhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke.
BACKGROUND AND PURPOSE Motor recovery after stroke has been shown to be correlated with both the fractional anisotropy (FA) of the affected corticospinal tract (CST) and the interhemispheric resting-state functional connectivity (rsFC) of the primary motor cortex (M1). However, the role of the restoration or enhancement of the M1-M1 rsFC in motor recovery remains largely unknown. We aimed to cl...
متن کاملAltered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke
A large number of functional imaging studies have focused on the understanding of motor-related neural activities after ischemic stroke. However, the knowledge is still limited in the structural and functional changes of the interhemispheric connections of the bilateral primary motor cortices (M1s) and their potential influence on motor function recovery following stroke.Twenty-four stroke pati...
متن کاملEffects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
BACKGROUND Following the concept of interhemispheric competition, downregulation of the contralesional primary motor cortex (M1) may improve the dexterity of the affected hand after stroke. OBJECTIVE To determine the effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the contralesional M1 on movement kinematics and neural activation within the motor system in the subacute ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2009